Object Oriented Eng Analysis (COE 528): Notes

Adam Szava

Winter 2022

Introduction

This document is a compilation of my notes from Object Oriented Eng Analysis
(COE 528) from Ryerson University. All information comes from my professor’s
lectures and online resources.

Contents

1 Week 1: Java Review 3
2 Week 2: Java Review 5
3 Week 3: Process Models, Abstraction/Decomposition, Proce-
dural Abstraction 7
4 Week 4: Data Abstraction 12
5 Week 5: Modelling with UML 20
6 Week 6: Design Patterns 22
7 Week 7: Design Patterns 30
8 Week 8: UML Use-Case Diagrams 33
9 Week 9: Design Patterns 38
10 Week 10: Design Patterns 43
11 Week 11: Requirement Elicitation + Analysis, System Design
and Object Design 49
12 Week 12: Testing and Debugging 49

1 Week 1: Java Review

This course focuses on software development using Java. In software develop-
ment there are four main activities:

1. Requirement Elicitation and Analysis

Features (Also called functional requirements)

Security

Maintainability

Scalability

Portability /Compatibility

Usability

Accessibility

Reliability (Can run for an extended amount of time after started)

Availability (Is available to begin often)

2. Object oriented design (UML)

Identify classes and relationships.

Identify methods (API) and write comments

3. Implementation

Translate design into code.

4. Testing the software for functionality.

This course discusses design pattern which are a way to design code based off
of some design constraints.

Java Review

The main ideas of object oriented programming (OOP) are:

e Classes (a blueprint of an object)

Objects
Encapsulation and scope
Inheritance

Polymorphism

Data Types
We have two different kinds of data types:
1. Primitive Data Types:
e int
e float
e double
e byte
e short
e char
e boolean

e long
2. Reference Data Types:

e obj
int|]

e String

e ... and many more

When using primitive data types, the variable is passed by value into methods
and other assignments. With reference data types only the reference is passed
into the method or other assignments. For example in pseudo-code:

int x = 5;
int y = x;
X = 9;

print(x);
print(y);

Output:
9
5

Stack versus Heap

The stack is a section of memory allocated to storing primitive data types and
reference variables. The heap is a section of memory allocated to storing data
related to objects.

For example the following pseudo-code’s memory consumption can be visu-
alized as:

main(){
int k = 3;
int[] a =
}

{...}

ml OF
int k =
int[] b
}

4;
= a;

Stack Heap

Comparing Objects

Unless overridden, the following two lines behave exactly the same:
objl.equals(obj2);

objl == obj2;

.. as in the comparison checks whether the two reference variables point to the
same object in the heap.

2 Week 2: Java Review

This week continues the Java review.

Final Keyword

The final keyword is used in the following ways:

e Final variables are constant and must be declared immediately or in con-
structor.

e Final classes cannot have subclasses.

e Final methods cannot be overridden.

Class Relationships

There are 3 main class relationships:

1. Is - A relationship, drawn as:

Child Parent
Inheritance I
\
\N%
K
o,
\"%
\? Interface
\

This relationship represents a class which is a child of a parent class, or a
class which is an implementation of a interface.

2. Has - A relationship, drawn as:

Car Wheel
1 4

<> Aggregation

Aggregation relationships have what’s called a multiplicity. The example
in the image has a multiplicity of 4 since 1 Car has 4 wheels. Generally
we use the following symbols to denote multiplicity:

e x denotes 0 or more.

e + denotes 1 or more.

e a...b denotes a to b.

3. Uses relationship, drawn as:

Dependency

This type of relationship means that the class A uses a method from the
class B.

3 Week 3: Process Models, Abstraction/Decomposition,
Procedural Abstraction

Process Models

Software engineering is the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software.

As the scale and complexity of a project increases the development methods
and project management must increase in formality. In this course we are
interested in formal development methods.

The goal of software engineering is to acheive high quality (non-functional
requirements) and productivity (input/output relationship of resources. Usually
measured in lines of code per person month.) The methods used must also
accommodate change and must be able to handle complex problems.

A process is defined as a sequence of steps to achieve some goal. A software
process is defined as a sequence of steps performed to produce software with
high quality, and within a budget/schedule.

A process model specifies a general process that is optimal for a class of
problems. A project may select its process using one of the process models.
Commonly a process model has the following phases:

e Requirement elicitation and analysis
e Design

e Coding (implementation)

e Testing

e Delivery (usually not included)

Different process models perform these phases in different ways and orders.
We will discuss five process models:

e Waterfall (traditional)
e Prototyping (traditional)

e Iterative (traditional)

¢ Timeboxing (traditional)

e Agile (modern)

Waterfall Process Model

The waterfall method is the simplest model, you just do all the of the phases in
linear order. A phase only starts when the previous has finished. The waterfall
method is very document-heavy meaning there are formal documents between
each phase.

The following are the important considerations about the waterfall process
method:

e Strengths:

Simple to understand
— Easy to execute
— Intuitive and logical

— Easy contractually
o Weaknesses:

— All or nothing delivery.

— Requirements are frozen early, not able to be changed.

— Disallows changes in general.

— No feedback from users.

— Encourages requirement bloating (additional unnecessary features at
the beginning since it cant be changed later).

e Types of projects:

— Well understood problems.
— Short duration projects.

— Automation of existing manual systems.

Prototyping Model

This type of process model is where you create a prototype of the project with
only key features at the beginning, features which need to be better understood.
Then you do requirement analysis again, and go on to do the rest of the steps
again in a linear sequence.

e Strengths:

— Helps requirement elicitation.

— Reduces risk.

— Better and more stable final. product

¢ Weaknesses:

Front heavy (a lot of work at the start).

Higher cost and schedule.

Encourages requirement bloating.

— Disallows later change.
e Types of projects:

— Novice users.
— Areas with high requirement uncertainty.

— Heavy reporting based systems can benefit from prototype Ul

Iterative Model

The iterative process model is where you create the software in increments and
each increment adds some functionality and is complete in itself. This can be
viewed as a sequence of waterfalls for each iteration. Feedback from one iteration
is used in future iterations.

e Strengths:

— Regular deliveries.

— Can accommodate changes naturally.

— Allows user feedback.

— Avoids requirement bloating.

— Naturally prioritizes requirements.

— Allows reasonable exit points (when development can end).

— Reduces risk.

¢ Weaknesses:

Overhead of planning each iteration.

Total cost may increase.

System arch and design may suffer.

— Rework may increase.
e Types of projects:

— Time is important.
— Risk of long projects cannot be taken.

— Requirements not know and evolve.

Time Boxing Model

In the time boxing model, you break the project into multiple teams, which
all have their own set of requirements, implementation and testing to do. The
teams start at different times so that the project comes together quickly after
the first team has finished.

e Strengths:

— All the benefits of iterative.
— Planning for iterations is easier.

— Very short delivery time.
¢ Weaknesses:

— Project management is more complex.
— Team size is larger.

— Lapses can lead to losses.
e Types of projects:
— Short deliveries are important.

— Flexibility in grouping features.

Agile Model

This is a modern umbrella term for many models based off of the prototyping and
iterative ideas, commonly agile process models include the following principles:

e Working software is the measure of progress.
e Software should be delivered in small increments.
e Even late changes should be allowed.

Prefer face to face communication over documentation.

e Continuous feedback to customer.

Prefer simple design which evolves.

Delivery dates are decided by the empowered teams.

The most common type of agile model is called extreme programming
(XP) which starts with short descriptions of the customer’s needs called ”user
stories”. The stories are then combined in different ways to make the formal
requirements. Planning is then done, and development is done in iterations.
High risk features are done first as a sort of ”prototype”.

e Strengths:

10

— Agile and responsive.
— Short delivery cycles.

— Continuous feedback and better acceptance.
e Weaknesses:

— Can tend to be ad-hoc.
— Lack of documentation.

— Continuous code change is risky.
e Types of projects:

— Requirements change a lot.
— Customer is deeply engaged in the project.

— Size is not too large.

Abstraction and Decomposition

A large project is very complex, thinking about it as one unit (a monolithic unit)
is unreasonable and it must be decomposed into smaller ones. The smaller
independent programs called modules interact with one another in simple, well-
defined ways.

Generally the following principles help decomposition:

e Each sub problem is at the same level of detail.
e Each sub problem can be solved independently.
e Solutions to sub problems can be combined to solve the original problem.

Abstractions assist in making good choices for pieces of the decomposition.
The following are some types of abstractions:

e Procedural Abstraction is when you break the problem into new op-
erations (like static methods and instance variables)

¢ Data Abstraction is when you introduce new data types. (Classes)

e Iteration Abstraction is when you iterate over item sin a collection
without considering details of how the items were obtained.

e Type Hierarchy is where you abstract away from individual types to
families of related types.

11

Procedural Abstraction

Procedures combine two types of abstraction in a way that allows us to abstract
a single action or task.

The first type of abstraction used is called abstraction by parametrization
which is where you abstract from the identity of the data being used. This is
done in the form of parameters into a method. When we use a parameter we are
abstracting away from the actual value of the input, into variables. The actual
value of the data is irrelevant, but the presence, count, and type of parameters
are relevant.

The benefit of this type of parametrization is that a large number of com-
putations can be described easily.

The second type of abstraction used is called abstraction by specification
which is where the behaviour that the user can expect from the module is
specified, and is abstracted away from implementing the behaviour.

What is done by the module is specified, how it is done is not.

Abstraction by specification has two advantages, locality (you can read the
functionality of an implementation without having to actually evaluate the im-
plementation) and modifiability (is a better implementation of a module be-
comes available you can change it without affecting how the program interacts
with other modules since the specific implementation was not specified).

Informal specification includes the following three comments:

1. REQUIRES: this clause states any pre-conditions on the input.
2. MODIFIES: this clause identifies all modified inputs (passed by reference).
3. EFFECTS: this clause defines the output behaviour.

If the behaviour is not defined for some inputs (like negative numbers for
example) we say that the module is a partial procedure, otherwise it is a total
procedure. Partial procedures are less safe than total ones as the code my not
behave as expected when incorrect parameters are entered.

In general, if the purpose of a procedure is difficult to state it should probably
be decomposed more. If code is repeated multiple times in a project, it should
probably become a procedure.

Procedures should be designed to be minimally constrained. Sometimes this
means the output is undetermined (meaning more than one possible output),
in such a case the implementation is deterministic (chooses one of the options).

We promote the generality (the classes out inputs the procedure can handle)
and simplicity (well-defined and easily explained purpose) of procedures.

4 Week 4: Data Abstraction

In Java, Data Abstraction consists of a set of objects and a set of methods,
implemented by a class or an interface.

12

When we use Data Abstraction we do not care about the representation of
the object. The representation of an object is the exact way data is stored
in its allocated memory, such as under different variable names or different
primitive data types or structures. The user has access to the methods of the
data abstraction which allows the user to interact with it without needed to
know the representation begin used.

We specify a data abstraction by putting a comment at the beginning of the
class:

class ClassName {
// OVERVIEW: brief description of the behaviour of the data type

}
A good overview shows how the abstract object can be described in terms of

well understood concepts. The overview clause must also state the mutability
of the object.

Representations, Abstraction Functions, Rep Invariants

The representation (or rep) of a class is the method in which data is stored by
the computer and used by methods in the class. The abstraction function is
how you go from the rep to the abstract object which can be understood by a
human.

Specific
Representation
(rep)

Abstraction
Function

Abstract Object

Implementer’s View: Client’s View:
(concrete Java object) (Abstract object)

For example, consider a line which goes from point (x1, y1) to a point (x2, y2),
as in:

(w2,y2)

(%1,91)

13

To make any line in this form we clearly need to store 4 numbers. The rep is
the way we store those numbers. The following are two possible reps:

Rep 1:
class Line {
int a;
int b;
int c;
int d;

//constructor
//methods
}

Rep 2:
class Line {
int [] nums = new int[4];

//constructor
//methods

}

The abstraction functions depend on the rep. The abstraction function
captures the designer’s intent in choosing a particular rep, and it tells us what
each piece of data (instance variables) represents in the actual abstract object
being represented.

The abstraction function for rep 1 could be:

// Line 1 = new Line();
// l.a represents x1, l.b represents x2
// 1l.c represents yl, 1.d represents y2

“A line which
goes from (x1,
v1) to (x2,y2)"

Abstraction
Function

Implementer’s View: Client’s View:
(concrete Java object) (Abstract object)

The abstraction function for rep 2 could be:

14

// Line 1 = new Line();
// 1.nums[0] represents x1, l.nums[1] represents x2
// l.nums[2] represents y1, 1l.nums[3] represents y2

“A line which
goes from (x1,
y1) to (x2,y2)”

Abstraction

int [] nums = new int[4]; Function

Implementer’s View: Client’s View:
(concrete Java object) (Abstract object)

There is no one rep for an object, and there is no one abstraction function to
go from the rep to the abstract object. The rep invariant is the common
assumption made in all reps of a particular object. This is a property that all
legitimate objects satisfy. In the previous example, the rep invariant could be
that all reps store 4 integers.

As Functions
The abstraction function as a function is a function defined as:
AF(c):C — A

As in a function which takes in a concrete rep of an object (¢), and maps that
concrete rep C' to an abstract object A.

In actual code this is done by the toString(); method.

The rep invariant as a function is a function defined as:

RI(c): C — {True, False}

As in a function which takes in a concrete rep of an object (c), and maps that
concrete rep C to a boolean value depending on whether the rep satisfies the
rep invariant.

In actual code this is done by the repOk(); method. Given some rep invari-
ant, we can implement a method called rep Ok() which checks if the rep invariant
is being honoured in the class.

Data Abstraction

A data abstraction as a whole can then be thought of as the following collection:

o A rep.

Override equals();

e Override toString();

Override clone();

Implementation of repOk();

15

clone() Method

The signature of the clone method is:
protected Object clone() throws CloneNotSupportedException;

This method creates a new object which is a copy of the object which called it.
There are two types of copies with different use cases:

e Shallow copy for primitive or immutable instance variables.
e Deep copy for mutable instance variables.

To override the clone method our class needs to implement the Cloneable inter-
face.
Following this, I will include 3 examples:

1. Shallow copy for a class Point.
2. Shallow copy for a class Circle (which is incorrect).

3. Deep copy for a class Circle (which is correct).

Example 1: Shallow Copy

class Point implement Cloneable {
private int x;
private int y;

//constructor here

// clone implemented as a shallow copy

@0verride

public Point clone() throws CloneNotSupportedException{
return (Point)super.clone;

}

public static void main(String[] args) {
Point al = new Point(2,3);

Point a2 = al.clone();

}

}

In this code we just tell the super (the Object class) to run its clone operation
which allocates a new memory space for the instance variables but we want it
to be downcast to a Point object. You can visualize the main as:

16

[13)
'_‘l
>
a =

a2 X

a =

~<

If you were to edit the x value of either point it would not affect the other point.
This is because all of the instance variables of the class are either immutable or
primitive (in this case all primitive).

Example 2: Why we need Deep Copy

If we try to do a shallow copy of a class with mutable reference instance variables,
then we have an issue. Consider the point class from the previous example, and
now look at the circle class:

public class Circle implements Cloneable {
private int radius;
private Point center;

// constructor here
// setters and getters here

// bad shallow copy

@0verride

public Circle clone() throws CloneNotSupportedException{
return (Circle) super.clone();

3

public static void main(String[] args){
Circle al = new Circle(5, new Point(2,3));
Circle a2 = al.clone();

al.setCenter(3,3);

}

}

You can visualize what’s happening in the main function as:

17

Circle Object

al radius | g

Point Object

Center B
\ X g N 3

Circle Object . 2l 3

) radius | g

Center d

But notice that in changing the center point of the circle ¢l we also changed
the center point of circle ¢2! That’s no good because they should not depend
on each other like that. This happened because one of the instance variables of
Circle was a mutable class. What we want is for the circle ¢2 to have it’s own
instance of a point object which can be changed independently. Notice that
if Point were an immutable class then this would matter, as issues only come
when you want to change the value of the Point object.

Example 3: Deep Copy

Let’s instead to a deep copy of the instance of the Circle class. Once again
recall the Point class from the first example, then:

public class Circle implements Cloneable {
private int radius;
private Point center;

// constructor here
// setters and getters here

// bad shallow copy

@0verride

public Circle clone() throws CloneNotSupportedException{
Circle ¢ = (Circle) super.clone();

c.center = (Point) center.clone();

return c;

}

public static void main(String[] args){

18

Circle al = new Circle(5, new Point(2,3));

Circle a2 = al.clone();
al.setCenter(3,3);

}

}

You can now visualize what’s happening in the main function as:

Circle Object Point Object

al » radius |g X 2[+3
Center — y 2+ 3
Circle Object Point Object

a2 radius | g X 2
Center ’/ y 3

Properties of Data Abstraction Implementations

A benevolent side effect is when an implementation modifies the rep without
affecting the abstract object. This is only possible if the abstraction function is
not one-to-one meaning many reps map to the same abstract object (which is
very commonly true).

Ezposing the rep is when the implementation provides users with access to
mutable components of the rep. In actual code this is done by having non-
private instance variables.

Design considerations for data abstractions:

1. Mutability is when a data abstraction has mutator methods. Immutable
abstractions are safer than mutable ones.

2. The are four kinds of operations of data abstractions:

e Creator operations produce new objects from scratch. (construc-
tors)

e Producer operations produce new objects given an existing object
as an argument. (clone)

¢ Mutator operations modify the state of their object. (setters)

19

e Observer operations provide information about the state of their
object. (getters)

3. A data type is adequate if it provides sufficient methods for the client to
use conveniently and efficiently.

5 Week 5: Modelling with UML

A model is an abstract representation of a system that enables us to analyse
the system. A diagram of a model helps us visualize complicated systems.

System Domains

The application domain is the environment in which the system is operating
in. These are the objects, devices, vehicles, people, and any other entity which
will be applying the system.

The solution domain is the set of technologies used to build the system.
These are the computers, sensors, helped methods and other technologies used
to implement the model.

For example, consider the following set of classes:

System Model (Concepts) (Analysis) System Model (Concepts) (Design)

UML V4 Summai:&

7 Package MapDisplay Display
TrafficControl |
v I FlightPlanpatab
Aircraft|| TrafficController "~ - 19 anbatabase
= .
Airﬁért FlightPlan - J Tra.ffJ.cControl|

Object-oriented analysis is concerned with modelling the application do-
main, while object-oriented design is concerned with modelling the solution
domain.

What is UML?

UML (Unified Modelling Language) is a standardized notation for modelling
software systems.

There are three components of the model of a system, the sum of which is
the entire system model:

1. Functional model describes the functionality of the system from the
user’s perspective. (Use case diagrams)

2. Object model describes the structure of the system in terms of objects,
attributes, and operations. (Class diagrams)

20

3.

Dynamic model describes the internal behaviour of the system. (Se-
quence diagrams, statechart diagrams, activity diagrams)

There are 5 types of UML diagrams:

1.

Use case diagrams describe the functional behaviour of the system as
seen by the user.

Class diagrams describe the static structure of the system in terms of
objects, attributes, and associations.

Sequence diagrams describe the dynamic behaviour between objects of
the system.

Statechart diagrams describe the dynamic behaviour of an individual
object.

Activity diagrams describe the dynamic behaviour of the workflow of a
system.

We are concerned with the first 2 in this course.

UML Class Diagrams

UML class diagrams are used to represent the structure of the system. This type
of diagram shows each class, its instance variables, methods, and relationships
among the classes with their multiplicities.
This type of diagram is used during requirements analysis to model the
application domain. Also used during system design to model subsystems.
Let’s use the following general code structure of a class:

public class className {

}

private dataTypel dataNamel;
public dataType2 dataName2;
protected dataType3 dataName3;

public className(pTypel pNamel) {}
public returnTypel methodNamel() {}
private returnType2 methodName2(pType2 pName2) {}

We would draw this class as a UML class diagram as the following:

21

className

-dataNamel: dataTypel
+dataName2: dataType2
#dataName3: dataType3

+className(pNamel: pTypel)
+methodNamel(): returnTypel
-methodName2(pName2: pType2): returnType2

Note that we use — to denote private, + to denote public, and # to denote
protected. Also, if the class is abstract, then we put the title in italics.

Go back to page 6 of this document to show how we denote relationships,
and refer to the following table to see how we denote multiplicity of aggregation
relationships:

Multiplicity Option Cardinality
0..0 o Collection must be empty

0..1 No instances or one instance

1.1 1V Exactly one instance

0.5 v Zero or more instances

1.* At least one instance

5--5 5 Exactly 5 instances

m..n At least m but no more than n instances

The only additional note needed is if you have an array declared as:
public dataType arr[] = new dataTypel[mult];

Then it would be denoted as the following in the UML class diagram (note the
multiplicity follows the same rules as the table above):

+arr: dataType[mult]

6 Week 6: Design Patterns

We now begin our study of design patterns. Design patterns provide a vo-
cabulary for understanding and discussing designs.

22

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without even
doing it the same way twice.

A design pattern is a structure of a problem which has some solution which
can be implemented in context. The are four essential elements to a design
pattern:

1. Pattern name is a handle we can use to identify a design problem.
2. Problem is what is being solved by the design pattern.
3. Solution is how the pattern solves the problem in context.
4. Consequences are the results and trade-offs of applying the pattern.
In order to describe a design pattern we need to know the following information:
1. Pattern name.
2. Intent (purpose of the pattern).
Motivating scenario in which the design pattern solves some problem.
Applicability of the design pattern.

Generic structure in the form of a UML class diagram.

A A

The passes and/or objects participating in the design pattern, their re-
sponsibilities and collaborations.

7. The trade-offs and results of using the pattern.
8. How the pattern can be implemented.

We use design patterns to identify solutions to problems by looking at the
abstract problem, instead of the problem in context. This lets use reuse code
from other solutions to the same abstract problem. This lets us get a higher level
perspective on the problem and on the process of design, as well as improving
modifiability and maintainability of code.

There is the following classification of design patterns, along with a few
specific design patters we will soon study:

23

Design Patterns

Creational Structural Behavioral
\ / i State .
Singleton Adapter Bridge ..

Design Pattern: Singleton
The singleton design pattern is classified as creational.

e Intent: The intent is to ensure a class has only one instance and provide
a global point of access to it.

e Motivation: It is important for some classes to only have one instance.
For example if you have a class responsible for handling the window of a
game, you certainly don’t want multiple windows popping up.

e Applicability: anywhere where we want to enforce only once instance of
a class can exist.

e Generic Structure:

24

singletonClass

-static instance: singletonClass

-Singleton(...)
+static getlnstance()

e Participants and Collaborations: client classes create an instance of
the singleton through the static getInstance method.

e Consequences: results include controlled access to the sole instance, and
the pattern can be extended to a variable number of permitted instances
easily.

¢ Implementation: There are three important points to implementing the
Singleton design pattern:

1. A private static member of the class that refers to the desired object.

2. A public static method that instantiates this class if this member is
null and then returns the value of this member.

3. A private or protected constructor so that no other class can directly
instantiate the class.

You can implement the getInstance() method in the following way (pseudocode):

if instance == null
instance = new Singleton(...)
return instance;

What this does it to create the first and only instance of the class, you call the
getInstance method, but then to access the class you use the same method but
instead it will just return to you the already created instance. This makes it
impossible to create another instance of the class. The following is actual java
code implementation of a singleton class:

public class Singleton {
private static Singleton instance;

25

private Singleton () {}
public static Singleton getInstance() {
if (instance == null) {
instance = new Singleton();
}
return instance;

}

// after this you would put the instance data and methods.

Design Pattern: Composite

Constructional design pattern.

Intent: The intent is to compose objects into a tree structure to repre-
sents part-whole relationships. The composite pattern lets clients treat
individual objects and compositions of objects uniformly.

Motivation: For example if you have a folder which can contain files
and other folders, you want to be able to rename folders just like you can
rename files. Additionally you want to be able to ask the size of a file the
same way you can ask the size of a folder.

Applicability: The applicability of this pattern is when you want the
client to be able to treat compositions and individual objects uniformly.

Participants and Collaborations: These classes include the Compo-
nent, Leaf, Composite, and of course Client. (Clients use the com-
ponent class to interact with the structure. If the uniform method is
called on the leaf then the concrete implementation is called, otherwise if
the uniform method is called on a composite, then each element of that
composite has its uniform method called).

Consequences:

— Easy to add new components.

— Simple to use for the client.

Simple structure of hierarchies.

— Can make design overly generalized.

Let’s say you are making a graphics editing software. You would define prim-
itive classes which are actual objects which can be drawn like Text, Line,
Rectangle and then you would define composite classes which may be called
Picture which can contain multiple primitive classes, or other Pictures. You
may then create a Graphic abstract class which would be what the client in-
teracts with which controls the graphic being created as a whole, instead of
individual pictures of primitives. The following image illustrates this:

26

Graphic
(abstract)

Picture

Text Rectangle

From here, we can say that draw is the method which wants to be treated uni-
formly between composites (Picture class) and primitives (Text, Line, Rectangle
classes). In the abstract class we have an abstract method draw() which must
be overridden concretely by th primitives. If you call draw() on a composite,
then draw() is called on all the elements within that composite.

~
-

Rectangle

Client EEEEEEEEE > Graphic << abstract>> | »
+draw()
Line Rectangle Text Picture
+draw() +draw() +draw() +draw()

+add(g: Graphic) | K>—
+remove(g:Graphic)
+getChild(index: int) \

for dll g in graphics
g.draw()

Generic Structure 1

Client Component (abstract)
_______ N o
it +Operation1() , |
+Operation2()
®
Leaf Composite

+Operationi()
+Operation2()

A

Here, the operations
are given concrete
implementations.

+Operation1() ,

+Operation2()
+addComponent()
+removeComponent()
+getComponent()

+getComponentCount()

e This is a safe alternative.

These are the operations
which should be supported
uniformly.

Here, the operations are

- called on each of the

leaves in the composition.

In this alternative, the
children managing
methods are in the
composite class.

e Does not exactly treat the leaf and the composite exactly the same.

Here is an example of the main file:

Component cl
Component c2
Component c3

new Leaf();
new Leaf();
new Composite();

((Composite)c3) .addComponent (c2) ;
((Composite)c3) .addComponent (c1) ;

28

Generic Structure 2

(ST B0 (B) These are the operations
which should be supported
_ +Operationl() uniformly.
Client +Operation2() *
+addComponent() In this alternative, the
"""""" ?| +removeComponent() children managing classes
+main() +getComponent() : are declared with empty
+getComponentCount() bodies in the component
class. They should throw
exceptions if called in the
component class.
*
Leaf Composite Here, the operations are
called on each of the
—— +0perat?on1() e leaves in the composition.
. +Operation2()
+Operation2()
N +addComponent() In this alternative, the
+removeComponent() I children managing
+getComponent() methods are overridden in
Here, the operations +getComponentCount() the composite class.

are given concrete
implementations.

e This is an unsafe alternative. If the client were to try and run the leaf
managing method on a leaf an exception would be thrown.

e Does treat the leaf and the composite exactly the same.

Here is an example of the main file:

Component cl = new Leaf();
Component c2 = new Leaf();
Component c¢3 = new Composite();
c3.addComponent (c2) ;
c3.addComponent (c1) ;

Notes on implementation:

e Leaf extends component.

Leaf gives concrete implementation of the uniform methods.

Composite extends component.

Composite contains an arrayList of Components.

Composite’s implementation of the uniform method is just to call the
method for all the elements in the arrayList.

29

7 Week 7: Design Patterns

Design Pattern: State

Intent: The intent is to allow an object to alter its behaviour (imple-
mentation of methods) when its internal state changes. The object will
appear to change to a different class.

Motivation: Sometimes there is an object that can be in one of several
states, and long if-else chains get cumbersome. The state of an object
is the exact condition of an object at a given time, based on instance
variables.

Applicability: This design pattern is used when an object behaviour
depends on its state, and must change its behaviour at runtime. This de-
sign pattern is also useful when methods have large, multipart conditional
statements.

Participants and Collaborators: Context, State, some number of Con-
creteState subclasses. Context delegates state-specific requests to the cur-
rent concreteState. Context is the primary interfacer for clients.

Consequences:
— New states and transitions can be added easily by defining new sub-
classes.
— Localizes behaviour of a state into an object.

— Allows state transitional logic to be part of state object instead of
conditional statements.

More objects used.

The following is the general structure of the pattern:

30

Context State (abstract)

¢ .
Bt +Operat!on1()
+Operation2()
ConcreteStateA ConcreteStateB
+Operation1() +Operationi()
+Operation2() +Operation2()

e The Context class contains a variable of type State. This variable gets
assigned to different children of the State class depending on what state
the object should be in.

e State is an abstract class, which has abstract methods.
e The operations in the abstract class need to be overridden in the concrete

classes.

Design Pattern: Observer

e Intent: The intent is to define a one-to-many dependency between ob-
jects so that when the one object changes its state, all its dependants are
notified and updated automatically.

e Motivation: An example could be an object containing data, which has
many observers being objects which create graphs from that data.

31

observers Q/ \'L

B rodow = 3] windaw -

| |
| | (W

—— change notification

| X
é | [v]507307]20
2801010 |

———-» requests, modifications

subject

When the data is updated, we want the graph making objects to be noti-
fied, and updated.

e Applicability:

— When an abstraction has two aspects, one dependent on the other.
Encapsulating these aspects in separate objects lets you vary and
reuse them independently.

— When a change to one object requires changing others and you don’t
know how many objects need to be changed.

— When an object should be able to notify the objects without making
assumptions about who these objects are.

e Participants:

— Subject provides an interface for attaching and detaching Observer
objects. This makes it so the concrete object doesn’t have to deal
with implementation of this.

— Observer defines an updating interface/abstract class for objects
that should be notified (which will inherit).

L Consequences:

— Can reuse subjects without reusing their observes, and vice-versa.

— Lets you add observers without modifying the subject or other ob-
servers.

— Minimal coupling between subject and observers.
— Support for broadcast communication.
— Unexpected updates.
¢ Implementation: To implement the design pattern, have Observers that

attach themselves to a Subject that watches for a change in state to occur.
Subject tells the observers the the change occurs.

32

The general outline of how this works is based off of the Subject class and the

Observer class. A subject class may have any number of dependent observers,

all of which are notified whenever the subject undergoes a change in state. In

response, each observer will query the subject to synchronize its state data.
The following is the general structure of the design pattern:

Subject (abstract) Observer (abstract)
-observers: ArraylList<Observer>
+attach(o: Observer): void +U pdate()
+detach(o: Observer): void
+notify()
ConcreteSubject ConcreteObserver
-subjectState: State -subject

+getState(): State
+setState(s: State): void

+update()

The pseudocode for the notify() method is:

for all o in observers
0.update() ;

¢ notify() is called whenever the state of the concrete subject is changed.

¢ update() is overridden in the concrete observer classes.

8 Week 8: UML Use-Case Diagrams

Recall that there are three components to the system model of a software system:
e Functional model (Use-case diagrams)
e Object model (Class diagrams)

e Dynamic model (Sequence diagrams)

33

In this section we are concerned with building the functional model of a soft-
ware system, defined by a use case diagram. Use case diagrams describe the
functional behavior of the system as seen by the user. Use case diagrams are
typically used in the requirements elicitation stage of development to communi-
cate how different users will interact with the software, and what they can each
have access to. These diagrams define the boundary of the system, as in what
operations are the systems own responsibility to conduct.

Typical elements of a UML use case diagram include:

e Actors: the different generalizations of types of users which will use the
software. Actors represent roles, as in a type of user of the system. Actors
can be users, an external system, or sensors from the physical environment.
An actor is given a role name, and an optional description.

e Use Case: the different operations or uses that the software system has.
A use case represents a class of functionality or behavior as seen from an
actor.

e Boundary: a literal box which encompasses all of the functionality of the
system.

¢ Relationships: arrows and lines which indicate the relationships be-
tween actors, and functionality.

The use case model of the software system is the set of all use cases that com-
pletely describe the functionality of the system.

Actors are drawn outside of the boundary of the system, and functionality
is drawn as circles inside the boundary of the system. For example the follow-
ing image shows the general layout of a UML use case diagram, without any
relationships:

34

Boundary

Actor

This software described above is useless! The actor has no way of interacting
with the software. This is why we need to define relationships between the
actors and one or more functionalities.

Use Cases

As described above, use cases are a way to communicate the functionality and
behavior of a software system. A use case is an abstraction that describes all
possible scenarios involving the described functionality. Use cases consist of 7
descriptive elements:

1. A unique name.

2. Participating actors which is a list of the actors which interact with the
use case.

3. Flow of events which shows which use cases are related to this use
case (more on these relationships later). You should use the active voic
while describing, saying what the actor or the system will do. The causal
relationships should be clear, and the boundaries of the system should be
stated.

4. Entry conditions. Conditions which initiate the use case.

5. Exit conditions. Conditions which end the use case.

35

6. Exceptions. Special cases of the use case which only happen given certain
situations.

7. Special requirements. Extra requirements not directly stated by the

functionality, for example a time limit on the response time.

Scenario-Based Requirements Elicitation

If you want to understand what a software system does, before it is developed,
you can use a scenario based requirements elicitation approach. This approach
has five components:

1. Identify actors.
2. Identify scenarios.
Identify use cases.

Refine use cases and identify relationships among use cases.

ook W

Identify non-functional requirements.

A scenario is an example of a real life story which would use the software
system. In these scenarios we give the actors real names, and imagine a real
situation. The focus of scenarios are understand ability. A use case is a gener-
alization of a class of scenarios.

The following are some common questions you may ask a client to better
understand the user case of the software system:

e What are the primary tasks that the system needs to perform?

e What data will the actor create, store, change, remove, or add in the
system?

e What external changes does the system need to react to?

e What changes or events will the actor of the system need to be informed
about?

After you have identified the scenarios, identify the formal use cases based on
those scenarios. For example if many scenarios require a user to ”Report emer-
gency” then that should be a formal use case of the system. Describe all use
cases using the seven elements we listed earlier.

Use Case Relationships

Dependencies between use cases are represented by use case relationships. There
are three types of use case relationships:

36

1. Includes. If different use cases execute the same sub-use case, then we can
say that the use case includes the sub-use case. For example, if you have
three use cases: log in, update email, enter password, then the log in use
case, and update email use case both include the enter password use case.
We use a dotted open arrow pointing towards the common use case with
the relationship labeled.

.

~. -

<<include>> -

Password

2. Extends. If a use case has to execute special actions in an exceptional
situation, then we say those special actions are a use case that extends the
initial use case. For example if you have a system that takes some physical
input and then Reports it as a use case, you may have a ConnectionDown
use case which extends Report with instructions on what to do if the
connection is down. We use a dotted open arrow pointing towards the use
case being extended with the relationship labeled.

Connection

<<extend>> Down

3. Generalization (similar to inheritance). In this type of relationship, a
parent use case can be achieved be completing one of its child use cases.
These children use cases are also call possible realizations. For example, if
you have a use case being CallEmergency then you can have three possible
realizations being CallPolice, CallAmbulance, and CallFire. We use a
solid arrow with a solid head pointing towards the parent without the
relationship labeled.

37

Call Police

Call ' Call

Emergency Ambulance

The following is a full example of a use case diagram of a receptionist:

9 Week 9: Design Patterns

This week we exclusively learned about three design patterns:
e Adapter.
e Strategy.

e Facade.

Design Pattern: Adapter

Adapter is a structural design pattern.

38

The main idea of this pattern is if you want to reuse some code that someone
else made, but the names of the API (method names, instance variable names)
do not match, even if the function of the method is the same (for example in
your software you may call "addUp()” while the APT uses ”sum()”). You need
a class in between your code and the outsourced code to call the function in the
right way, in a way we need an Adapter between our software and the outsourced
ones.

e Intent: The intent of this design pattern is to convert the interface of
a class into another interface clients expect. Adapters let classes work
together that couldn’t otherwise because of incompatible APIs.

e Motivation: sometimes a class that’s designed for reuse is not reusable
only because of differences in the interface naming.

e Applicability: You can use this design pattern when you want to use an
existing class, and its interface does not match with the one you need. You
can also do this when you want to create a reusable class that cooperates
with unrelated classes with other APIs.

e Participants:

— Target is what runs the main software, and uses the adapter to
interact with outsourced code.

— Client interacts with the target.

Adaptee is the outsourced code which needs to be adapted before
use.

— Adapter is the class which redirects the function calls from Target
to Adaptee using the correct API.

¢ Consequences: the only consequence is that preexisting code can fit into
new classes without being limited by their interfaces.

¢ Implementation:

— Contain the existing class in another class.

— Have the containing class match the required interface and call the
methods of the contained class.

The following is the generic structure of the Adapter design pattern:

39

Client Target

+request()
Adapter Adaptee
-anAdaptee: Adaptee 1 1
+request() { +specificRequest()

anAdaptee.specificRequest()

}

Design Pattern: Strategy

The strategy is categorized as a behavioral pattern.

The idea of this design pattern is very similar to the state design pattern.
In this case we call them strategies instead of states and they describe ways
to implement a method instead of behaviors.

e Intent: Define a family of algorithms, encapsulate each in a class and
make them interchangeable. Strategy design pattern lets the algorithm
vary independently from the clients that use it.

e Motivation: We could use this for example in the use of a sort() method.
The different sort algorithms can be encapsulated into each their own
classes, then the main class can can switch between which sort algorithm
actually is being used to implement the sort() method.

e Applicability:

— many related classes differ only by their behavior.

— You need different variants of an algorithm to be used within a class.

— A class defines many behaviors and otherwise you would use many
conditional statements.

e Participants:

— Context is the class which contains the main file. It contains some
function call to the abstract Strategy class. Using polymorphism we
can make it implement the correct algorithm.

— The Strategy class is an abstract class which the concrete strategies
inherit from.

— Any number of concrete strategies which implement the algorithm.

40

e Consequences:
— Provides an alternative to subclassing the Context to get a variety
of behaviors.
— Eliminates large conditional statements.
— Provides a choice of implementations for the same behavior.

— A disadvantage is that it has an increased number of objects.

The following is the general structure for the Strategy design pattern:

Context <<Strategy>>
1 1
+contextinterface() +algorithminterface()
concStratl concStrat2
+algorithminterface() +algorithminterface()

In the context class you have an instance variable of type Strategy which can
be assigned to concrete strategies at runtime. The contextInterface() call call
the algorithmInterface() method of the strategy object.

Design Pattern: Facade

This design pattern is classified as Structural.

The idea of this pattern is if you have some complicated subsystem within
your software system, then you may want to do some action which requires a
bunch of function calls at once in a reliable pattern. In this case we can just
make a new function which calls all of these methods so the user does not need to
know the inner workings. We say that that function is a Facade to the complex
subsystem.

e Intent: The intent of this design pattern is to provide a unified interface
to a set of interfaces in a subsystem. The facade defines a higher-level
interface that makes the subsystem easier to use.

e Motivation: we want to simplify how we use an existing system.

41

= | = ! client classes

S subsystem classes

e Applicability:

— You want to provide a simple interface to a complex subsystem.

— You want to layer your subsystems. The facade defines an entry point
to each subsystem level.

— You want to decouple classes of a subsystem from clients and other
subsystems, promoting system independence and portability.

e Participants:

— The facade class is what is communicated with by the client or other
subsystems, and which calls the functions within the complex subsys-
tem. The facade may have to do computation on its own with private
helper methods to properly call the functions within the system.

— The subsystem classes.
¢ Consequences:

— Shields client from subsystem complexities.

— Promotes weak coupling, allowing you to change classes that comprise
the subsystem without affecting clients.

— It does not prevent sophisticated clients from accessing the underly-
ing subsystem.

The general structure of the Facade design pattern is below:

Facade

42

10 Week 10: Design Patterns

This week we learned about three new design patterns:
e Bridge Pattern.
e Factory Method Pattern.

e Abstract Factory Pattern.

Design Pattern: Bridge

This design pattern is classified as structural.

Given the following scenario: You are the developer for a TV company who
is testing many different remote controls with different TVs, and they should all
work together. You may create an abstract class Remote Control which would
then have subclasses for all the types of remotes you would need, but then you
also need an abstract class TVSet which would each have a slightly different
implementation of setChannel(channel) for example. You want to make a piece
of software that supports all of the remotes and TVs, so you need to be able
both the abstraction (different remotes) and implementation (different TVs)
independently.

The following class diagram shows the TV problem solved using this pattern:

Implementation ¢)ass hicrah‘.hy
pskrackion The velationship between

P:\ass wieeavehy: €~ Lhe two's rcgirv:d to —>
as the “'Dridgt

: RemoteControl Has-A

on() onf)

offf) offf)
setChannel() ...+ g ‘ implementor.tuneChannel(channel); ' tuneChannel()
N more methods # more methods

T All methods in the abs{:\rai}lah f \

ave implemented in terms RCA Sony

the implementation.

ConcreteRemote

on() on()
off() ofi()
tuneChannel() tuneChannel()

e ‘ sefChannel(currentStation + 1); ‘ /Imore methods I more methods

currentStation

on()

off)

setStation() .
nextChannel() - ’
previousChannel()

e R Contreke subtlasses are implemented in tevms of the
abstraction, not the implementation.

It’s kind of like a state design pattern and a strategy design pattern in one, and
both ways.

e Intent: The intent of this design pattern is to decouple an abstraction
from its implementation so that the two can very independently.

43

e Motivation: Some intuitive solutions to this problem require 3+ levels
of abstraction (inheritance levels) which against OOP design principles.

e Applicability:

— Use when you want to avoid permanent binding between abstraction
and implementation. This means when you don’t want a specific
”remote” bound to a specific ?TV”.

— Both abstractions and implementations should be extensible by sub-
classing.

e General Structure:

|
| Albstrackon
1__>-i-p: Hlun{u o et ImMpl@mentor
+Opera (jes | ’ 1 ”
. H - — = H Uperabonimyg
N | - | e : J
| E_- << IMp-@Uperationimg “J
A L t
Hetlned;\;—nlracllon ConcreteimplementorA ConcreteimpiementorB

i 4 Operationimy | +Operationimp()

e Participants:
— Abstraction maintains a reference to an object of type Implementor.
This class forwards client requests to Implementor.

— ConcreteAbstraction is an actual version of the abstraction, and
is a subclass.

— Implementor defines the methods for implementation of what the
abstraction wants to do.

— ConcreteImplementor is an actual version of the implementation,
and is a subclass.
e Benefits: Abstraction and implementation can be extended indepen-

dently as they are decoupled.

e Implementation: Encapsulate the implementations into an abstract
class. Contain a reference to the implementation in the base class of
the abstraction.

44

Design Pattern: Factory Method

This method is categorised as creational.

The idea of this pattern is if you are in a class and want to create an instance
of another class, but you don’t want to specify which one, in fact you want to
leave it up to your own subclasses to ”"decide” which new class to make.

To be clear, the subclasses do no ”deciding” (the subclass is chosen by the
Client) but the phrasing is used because the ”Creator” class has no knowledge
of which other class is being created (this will make more sense once you see
some examples).

e Intent: Define an interface for creating an object, but lets subclasses
decide which class to instantiate. Factory Method lets a class defer in-
stantiation to subclasses.

e Motivation: This design pattern is useful when you are making an in-
terface (not literally a Java Interface, but a set of code which allows other
code to interace). For example if you have an Application class which is
meant to create Document classes. The Document that Application cre-
ates depends on what concrete application is trying to make a document
(Word would make a text file, Audio editors would make an .mp3 file, etc.)
The Application class is responsible for managing and creating documents
at the request of one of it’s child classes. Application should be made in
such a way that it does not need to know which exact concrete application
is calling to make a new Document.

e Applicability:

— Use when a class cannot anticipate the class of objects it must create.

— A class wants its subclass to specify the objects it creates.

e General Structure:

Diagram 1:

45

The Crzaloo‘(sat
Lhe implemen

/

/_\7 Product —
“ oo i mvlzmm{ factoryMethod() [
Al p Levbate so that the i
e W
e hith use the \:rodut{s
laSSf-S whi :
"La veker o the mkcv;au,
n
ot the contreke elass
\) ConcreteProduct ConcreteCreator
factoryMethod()
L —

M‘I'Of- d & bs 0 I“xtiﬁ{S

N

The ContreteCreator is vesponsible for
treating one or more tontvete products. |t
is the only elass that has the knowledae of
how to ereate these produtts

Diagram 2:

shrack

\ass that tontairs
tations for all of the
'\‘l\m\aﬁ \wadutbx

methods to ma T ckor ethod

exeert for the

The abstratt factoryMethod()

I is what all Creator subelasses

must implement.

The ContreteCreator
implements the
Eachwdehodf), whith is
the method that actually
produces products.

ConCreator |

frodct foc#or:lﬂcﬂmfﬁ Subclass
OnClo eration(‘

Proo[uf.’f-'fw-fuv Hedhod ()

Conlreatord

Producfactorytetod ()

imf,{eme_njra{:[vh

Con Fl‘o J.ud' \

——

Concrebe
Creakors
e ke

co I‘I(_'({,lrﬂ
PI‘ od ueks

46

Con PN alu+ 4

A few notes:

The FactoryMethod is the method which handles the creation of new
Products.

The factory method is abstract in the Creator class.

AnOperation() can have contextual meaning in the implementation,
however it must at some point call FactoryMethod.

The concrete factory method implementations return the correct type
of ConcreteProduct.

e Participants:

— Creator declares the factory method. Relies on its subclasses to
define the factory method so that it returns an instance of the ap-
propriate ConcreteProduct.

— ConcreteCreator overrides the factory method.
— Product is the interface of the objects of the factory.

— ConcreteProduct implements the Product interface.

Design Pattern: Abstract Factory

This method is categorised as creational.

The idea of the abstract factory pattern is you take the Factory Method pat-
tern, but now your Creator class does not just make a single Product at a time,
but instead it creates families of related classes. A family of related classes are
classes that contextually work together. For example let’s say you are making
a button (which contains Functionality and Icon) with text, on three operat-
ing systems: Windows, Mac, and Linux. You would want the Creator to create
WindowsFunctionality and WindowsIcon when the ConcreteCreator is Windows
as opposed to come combination of Functionality and Icon for Windows, Mac,
and Linux.

Your creator class now can create multiple products potentially of different

types.

e Intent: Provide an interface for creating families of related or independent
objects without specifying their concrete classes.

e General Structure:

47

> shrack s> & B3
@Cm*-or‘ qhsgﬂ;‘iﬂs ® chlud A FI‘ﬂaPMJ ¢
Pragful }-'-1 : fae k;erchJﬁ_‘: I subclass
Product B :focogtheld) [H2 120"

UnOlogr"a,-th ()

N 1
CohCreaJror 1 CanProduct A1 ConfProduct B 4
{}nmt.«:l ;n‘ .'j"ac Iur‘jHrwl'.'J —'
FraJud'l?] '_ﬂbch«jH(HE{)
Y
ConCreator 2 ConProtect A2 | | ConProduct B
Froduct A : fockoryHeledd ()
Fradtuct B :fcborg Hehedd
-
o 0 o
é @ L)

A few notes:

— The abstract Creator class is sometimes called AbstractFactory.

— The abstract Creator has different factory methods for the different
Products in the family of classes being created.

— Each factory method can be overridden by any of the concrete factory
classes.

— An abstract factory can have any number of product classes.

— You can think of Product A, B, and so on as categories of products.
e Applicability:

— When a system should be independent of how its products are cre-
ated.

— When a systems should be configured with one of multiple families
of objects.

48

— When a family of related products is designated to be used together.

— When you want to provide a class library of products, and you want
o just reveal their interfaces.

e Participants:

— Same as Factory Method with few exceptions.

— AbstractFactory is the Creator class for this design pattern. It
defines the interface for how to create each member of the family of
objects. Each family member is creates by having a unique Con-
creteFactory.

e Benefits:

— Isolates concrete classes.
— Exchanging product families easy.

— One downside is supporting new products could require editing tested
code, but adding new families of Products is easy.

e Implementation:

— Define an abstract factory class that specifies which objects are to be
created.

— Implement one concrete class for each family.

11 Week 11: Requirement Elicitation 4+ Analy-
sis, System Design and Object Design

12 Week 12: Testing and Debugging

49

